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 19.1 Learning: The ID3 Algorithm 

 In this section, we implement the ID3 induction algorithm described in 
Luger (2009, Section 10.3). ID3 infers decision trees from a set of training 
examples, which enables classification of an object on the basis of its 
properties. Each internal node of the decision tree tests one of the 
properties of a candidate object, and uses the resulting value to select a 
branch of the tree. It continues through the nodes of the tree, testing 
various properties, until it reaches a leaf, where each leaf node denotes a 
classification. ID3 uses an information theoretic test selection function to 
order tests so as to construct a (nearly) optimal decision tree. See Table 
19.1 for a sample data set and Figure 19.1 for an ID3 induced decision tree. 
The details for the tree induction algorithms may be found in Luger (2009, 
Section 10.3) and in Quinlan (1986). 

The ID3 algorithm requires that we manage a number of complex data 
structures, including objects, properties, sets, and decision trees. The heart of 
our implementation is a set of structure definitions, aggregate data types 
similar to records in the Pascal language or structures in C. Using 
defstruct, Common Lisp allows us to define types as collections of 
named slots; defstruct constructs functions needed to create and 
manipulate objects of that type. 

Along with the use of structures to define data types, we exploit higher order 
functions such as mapcar. As the stream-based approach to our expert 
system shell demonstrated, the use of maps and filters to apply functions to 
lists of objects can often capture the intuition behind an algorithm with greater 
clarity than less expressive programming styles. The ability to treat functions as 
data, to bind function closures to symbols and process them using other 
functions, is a cornerstone of Lisp programming style. 

A Credit History 
Example 

This chapter will demonstrate the ID3 implementation using a simple 
credit assessment example. Suppose we want to determine a person’s credit 
risk (high, moderate, low) based on data recorded from past loans. We can 
represent this as a decision tree, where each node examines one aspect of a 
person’s credit profile. For example, if one of the factors we care about is 
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A Credit History 
Example 

This chapter will demonstrate the ID3 implementation using a simple 
credit assessment example. Suppose we want to determine a person’s credit 
risk (high, moderate, low) based on data recorded from past loans. We can 
represent this as a decision tree, where each node examines one aspect of a 
person’s credit profile. For example, if one of the factors we care about is 
collateral, then the collateral node will have two branches: no collateral and 
adequate collateral. 

 The challenge a machine learning algorithm faces is to construct the “best” 
decision tree given a set of training examples. Exhaustive training sets are 
rare in machine learning, either because the data is not available, or because 
such sets would be too large to manage effectively. ID3 builds decision 
trees under the assumption that the simplest tree that correctly classifies all 
training instances is most likely to be correct on new instances, since it 
makes the fewest assumptions from the training data. ID3 infers a simple 
tree from training data using a greedy algorithm: select the test property 
that gives the most information about the training set, partition the 
problem on this property and recur. The implementation that we present 
illustrates this algorithm. 

We will test our algorithm on the data of table 19.1. 

 

No. Risk 
Credit 
History Debt Collateral Income 

1. high bad high none $0 to $15k 

2. high unknown high none $15k to $35k 

3. moderate unknown low none $15k to $35k 

4. high unknown low none $0 to $15k 

5. low unknown low none over $35k 

6. low unknown low adequate over $35k 

7. high bad low none $0 to $15k 

8. moderate bad low adequate over $35k 

9. low good low none over $35k 

10. low good high adequate over $35k 

11. high good high none $0 to $15k 

12. moderate good high none $15k to $35k 

13. low good high none over $35k 

14. high bad high none $15k to $35k 

Table 19.1 Training data for the credit example 

Figure 19.1 shows a decision tree that correctly classifies this data.  

defstruct allows us to create structure data items in Lisp. For example, 
using defstruct, we can define a new data type, employee, by 
evaluating a form. employee is the name of the defined type; name, 
address, serial-number, department and salary are the 
names of its slots. Evaluation of this defstruct does not create any 
instances of an employee record; instead, it defines the type, and the 
functions needed to create and manipulate objects of this type. 
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Figure 19.1 A decision tree that covers the data of Table 19.1 

Defining 
Structures 

Using Defstruct 

   (defstruct employee 

 name 

 address 

 serial-number 

 department 

 salary) 

Here, defstruct takes as its arguments a symbol, which will become 
the name of a new type, and a number of slot specifiers. Here, we have 
defined five slots by name; slot specifiers also allow us to define different 
properties of slots, including type and initialization information, see Steele 
(1990). 

Evaluating the defstruct form has a number of effects, for example: 

(defstruct <type name> 

 <slot name 1> 

 <slot name 2> 

    … 

 <slot name n>) 

defstruct defines a function, named according to the scheme: make-
<type name>, that lets us create instances of this type. For example, 
after defining the structure, employee, we may bind new-employee 
to an object of this type by evaluating: 

(setq new-employee (make-employee)) 

We can also use slot names as keyword arguments to the make function, 
giving the instance initial values. For example: 
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(setq new-employee 

 (make-employee 

  :name ‘(Doe Jane) 

  :address “1234 Main, Randolph, Vt” 

  :serial-number 98765 

  :department ‘Sales 

  :salary 4500.00)) 

defstruct makes <type name> the name of a data type. We may 
use this name with typep to test if an object is of that type, for example: 

> (typep new-employee ‘employee) 

t 

Furthermore, defstruct defines a function, <type-name>-p, which 
we may also use to test if an object is of the defined type. For instance: 

> (employee-p new-employee) 

t 

> (employee-p ‘(Doe Jane)) 

nil 

Finally, defstruct defines an accessor for each slot of the structure. 
These accessors are named according to the scheme: 

<type name>-<slot name> 

In our example, we may access the values of various slots of new-
employee using these accessors: 

> (employee-name new-employee) 

(Doe Jane) 

> (employee-address new-employee) 

“1234 Main, Randolph, Vt” 

> (employee-department new-employee) 

Sales 

We may also use these accessors in conjunction with setf to change the 
slot values of an instance. For example: 

> (employee-salary new-employee) 

4500.0 

> (setf (employee-salary new-employee) 5000.00) 

5000.0 

> (employee-salary new-employee) 

5000.0 

So we see that using structures, we can define predicates and accessors of a 
data type in a single Lisp form. These definitions are central to our 
implementation of the ID3 algorithm. 

When given a set of examples of known classifications, we use the sample 
information offered in Table 19.1, ID3 induces a tree that will correctly 
classify all the training instances, and has a high probability of correctly 



 Chapter 19 Machine Learning in Lisp 255 

 

classifying new people applying for credit, see Figure 19.1. In the 
discussion of ID3 in Luger (2009, Section 10.3), training instances are 
offered in a tabular form, explicitly listing the properties and their values 
for each instance. Thus, Table 19.1 lists a set of instances for learning to 
predict an individual’s credit risk. Throughout this section, we will continue 
to refer to this data set. 

Tables are only one way of representing examples; it is more general to 
think of them as objects that may be tested for various properties. Our 
implementation makes few assumptions about the representation of 
objects. For each property, it requires a function of one argument that may 
be applied to an object to return a value of that property. For example, if 
credit-profile-1 is bound to the first example in Table 19.1, and 
history is a function that returns the value of an object’s credit history, 
then: 

> (history credit-profile-1) 

bad 

Similarly, we require functions for the other properties of a credit profile: 
> (debt credit-profile-1) 

high 

> (collateral credit-profile-1) 

none 

> (income credit-profile-1) 

0-to-15k 

> (risk credit-profile-1) 

high 

Next we select a representation for the credit assignment example, making 
objects as association lists in which the keys are property names and their 
data are property values. Thus, the first example of Table 19.1 is 
represented by the association list: 

((risk . high) (history . bad) (debt . high) 
(collateral . none)(income . 0-15k)) 

We now use defstruct to define instances as structures. We represent 
the full set of training instances as a list of association lists and bind this list 
to examples: 

(setq examples 

 ‘(((risk . high) (history . bad) (debt . high)  

         (collateral . none) (income . 0-15k)) 

  ((risk . high) (history . unknown)  

  (debt . high)(collateral . none)  

  (income . 15k-35k)) 

  ((risk . moderate) (history . unknown) 

  (debt . low) (collateral . none) 

  (income . 15k-35k)) 

 ((risk . high) (history . unknown) (debt . low)  

         (collateral . none) (income . 0-15k)) 
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 ((risk . low) (history . unknown) (debt . low)  

         (collateral . none) (income . over-35k)) 

 ((risk . low) (history . unknown) (debt . low)  

  (collateral . adequate)  

  (income . over-35k)) 

 ((risk . high) (history . bad) (debt . low)  

         (collateral . none) (income . 0-15k)) 

 ((risk . moderate) (history . bad) (debt . low)  

         (collateral . adequate)  

  (income . over-35k)) 

 ((risk . low) (history . good) (debt . low)  

         (collateral . none) (income . over-35k)) 

 ((risk . low) (history . good) (debt . high)  

        (collateral . adequate) (income . over-35k)) 

 ((risk . high) (history . good) (debt . high)  

        (collateral . none) (income . 0-15k)) 

 ((risk . moderate) (history . good)  

  (debt . high) (collateral . none)  

  (income . 15k-35k)) 

 ((risk . low) (history . good) (debt . high)  

        (collateral . none) (income . over-35k)) 

 ((risk . high) (history . bad) (debt . high)  

        (collateral . none) (income . 15k-35k)))) 

Since the purpose of a decision tree is the determination of risk for a 
new individual, test-instance will include all properties except 
risk: 

(setq test-instance 

    ‘((history . good) (debt . low)  

  (collateral . none) (income . 15k-35k))) 

Given this representation of objects, we next define property: 
(defun history (object) 

    (cdr (assoc ‘history object :test #’equal))) 

(defun debt (object) 

    (cdr (assoc ‘debt object :test #’equal))) 

(defun collateral (object) 

    (cdr (assoc ‘collateral object :test  

   #’equal))) 

(defun income (object) 

    (cdr (assoc ‘income object :test #’equal))) 

(defun risk (object) 

    (cdr (assoc ‘risk object :test #’equal))) 
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A property is a function on objects; we represent these functions as 
a slot in a structure that includes other useful information: 

(defstruct property  

 name 

 test 

 values) 

The test slot of an instance of property is bound to a function that 
returns a property value. name is the name of the property, and is 
included solely to help the user inspect definitions. values is a list of all 
the values that may be returned by test. Requiring that the values of each 
property be known in advance simplifies the implementation greatly, and is 
not unreasonable. 

We now define decision-tree using the following structures: 
(defstruct decision-tree 

  test-name 

  test 

  branches) 

(defstruct leaf 

  value) 

Thus decision-tree is either an instance of decision-tree or 
an instance of leaf. leaf has one slot, a value corresponding to a 
classification. Instances of type decision-tree represent internal 
nodes of the tree, and consist of a test, a test-name and a set of 
branches. test is a function of one argument that takes an object and 
returns the value of a property. In classifying an object, we apply test to 
it using funcall and use the returned value to select a branch of the 
tree. test-name is the name of the property. We include it to make it 
easier for the user to inspect decision trees; it plays no real role in the 
program’s execution. branches is an association list of possible subtrees: 
the keys are the different values returned by test; the data are subtrees. 

For example, the tree of Figure 19.1 would correspond to the following set 
of nested structures. The #S is a convention of Common Lisp I/O; it 
indicates that an s-expression represents a structure. 

  #S(decision-tree 

   :test-name income 

   :test #<Compiled-function income #x3525CE> 

   :branches 

    ((0-15k . #S(leaf :value high)) 

    (15k-35k . #S(decision-tree 

   :test-name history 

   :test  

   #<Compiled-function history #x3514D6> 

   :branches 
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    ((good . #S(leaf :value moderate)) 

    (bad . #S(leaf :value high)) 

    (unknown . #S(decision-tree 

    :test-name debt 

    :test  

    #<Compiled-function debt #x351A7E> 

    :branches 

     ((high . #S(leaf :value high)) 

     (low . #S(leaf  

     :value moderate)))))))) 

    (over-35k . #S(decision-tree  

    :test-name history 

    :test  

     #<Co…d-fun.. history #x3514D6> 

    :branches 

     ((good . #S(leaf :value low)) 

     (bad . #S(leaf :value  

         moderate)) 

     (unknown . #S(leaf :value  

         low))))))) 

Although a set of training examples is, conceptually, just a collection of 
objects, we will make it part of a structure that includes slots for other 
information used by the algorithm. We define example-frame as: 

(defstruct example-frame 

    instances 

    properties 

    classifier 

    size 

    information) 

instances is a list of objects of known classification; this is the training 
set used to construct a decision tree. properties is a list of objects of 
type property; these are the properties that may be used in the 
nodes of that tree. classifier is also an instance of property; it 
represents the classification that ID3 is attempting to learn. Since the 
examples are of known classification, we include it as another property. 
size is the number of examples in the instances slot; 
information is the information content of that set of examples. We 
compute size and information content from the examples. Since 
these values take time to compute and will be used several times, we save 
them in these slots. 

ID3 constructs trees recursively. Given a set of examples, each an instance 
of example-frame, it selects a property and uses it to partition the set 
of training instances into non-intersecting subsets. Each subset contains all 
the instances that have the same value for that property. The property 
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              19.2    Implementing ID3 

 The heart of our implementation is the function build-tree, which 
takes an instance of example-frame, and recursively constructs a 
decision tree. 

(defun build-tree (training-frame) 

 (cond 

                      ;Case 1: empty example set. 

 ((null (example-frame-instances training-frame)) 

  (make-leaf :value  

   “unable to classify: no examples”)) 

               ;Case 2: all tests have been used. 

 ((null (example-frame-properties  

     training-frame)) 

  (make-leaf :value (list-classes  

     training-frame))) 

             ;Case 3: all examples in same class. 

 ((zerop (example-frame-information  

     training-frame)) 

  (make-leaf :value (funcall (property-test  

 

selected becomes the test at the current node of the tree. For each subset 
in the partition, ID3 recursively constructs a subtree using the remaining 
properties. The algorithm halts when a set of examples all belong to the 
same class, at which point it creates a leaf. 

Our final structure definition is partition, a division of an example set 
into subproblems using a particular property. We define the type 
partition: 

(defstruct partition 

    test-name 

    test 

    components 

    info-gain) 

In an instance of partition, the test slot is bound to the property 
used to create the partition. test-name is the name of the test, 
included for readability. components will be bound to the subproblems 
of the partition. In our implementation, components is an 
association list: the keys are the different values of the selected test; each 
datum is an instance of example-frame. info-gain is the 
information gain that results from using test as the node of the tree. As 
with size and information in the example-frame structure, this 
slot caches a value that is costly to compute and is used several times in the 
algorithm. By organizing our program around these data types, we make 
our implementation more clearly reflect the structure of the algorithm. 
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             (example-frame-classifier  

     training-frame)) 

    (car (example-frame-instances  
       training-frame))))) 

                  ;Case 4: select test and recur. 

 (t (let ((part (choose-partition  

  (gen-partitions training-frame)))) 

       (make-decision-tree 

      :test-name  

     (partition-test-name part) 

      :test (partition-test part) 

      :branches (mapcar #’(lambda (x) 

       (cons (car x)  

     (build-tree (cdr x)))) 

          (partition-components  

         part))))))) 

Using cond, build-tree analyzes four possible cases. In case 1, the 
example frame does not contain any training instances. This might occur if 
ID3 is given an incomplete set of training examples, with no instances for a 
given value of a property. In this case it creates a leaf consisting of the 
message: “unable to classify: no examples”. 
The second case occurs if the properties slot of training-frame is 
empty. In recursively building the decision tree, once the algorithm selects a 
property, it deletes it from the properties slot in the example frames for 
all subproblems. If the example set is inconsistent, the algorithm may 
exhaust all properties before arriving at an unambiguous classification of 
training instances. In this case, it creates a leaf whose value is a list of all 
classes remaining in the set of training instances. 

The third case represents a successful termination of a branch of the tree. If 
training-frame has an information content of zero, then all of the 
examples belong to the same class; this follows from Shannon’s definition of 
information, see Luger (2009, Section 13.3). The algorithm halts, returning a 
leaf node in which the value is equal to this remaining class. 

The first three cases terminate tree construction; the fourth case recursively 
calls build-tree to construct the subtrees of the current node. gen-
partitions produces a list of all possible partitions of the example set, 
using each test in the properties slot of training-frame. choose-
partition selects the test that gives the greatest information gain. After 
binding the resulting partition to the variable part in a let block, build-
tree constructs a node of a decision tree in which the test is that used in the 
chosen partition, and the branches slot is bound to an association list of 
subtrees. Each key in branches is a value of the test and each datum is a 
decision tree constructed by a recursive call to build-tree. Since the 
components slot of part is already an association list in which the keys 
are property values and the data are instances of example-frame, we 
implement the construction of subtrees using mapcar to apply build-
tree to each datum in this association list. 
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gen-partitions takes one argument, training-frame, an object of 
type example-frame-properties, and generates all partitions of its 
instances. Each partition is created using a different property from the 
properties slot. gen-partitions employs a function, partition, 
that takes an instance of an example frame and an instance of a property; it 
partitions the examples using that property. Note the use of mapcar to 
generate a partition for each element of the example-frame-
properties slot of training-frame. 

(defun gen-partitions (training-frame) 

    (mapcar #’(lambda (x)  

   (partition training-frame x)) 

   (example-frame-properties training-frame))) 

choose-partition searches a list of candidate partitions and chooses the 
one with the highest information gain: 

(defun choose-partition (candidates) 

    (cond ((null candidates) nil) 

   ((= (list-length candidates) 1) 

    (car candidates)) 

   (t (let ((best (choose-partition  

     (cdr candidates)))) 

  (if (> (partition-info-gain (car candidates))  

         (partition-info-gain best))  

   (car candidates) best))))) 

partition is the most complex function in the implementation. It takes as 
arguments an example frame and a property, and returns an instance of a 
partition structure: 

(defun partition (root-frame property) 

   (let ((parts (mapcar #’(lambda (x)  

   (cons x (make-example-frame))) 

    (property-values property)))) 

   (dolist (instance  

   (example-frame-instances root-frame)) 

     (push instance (example-frame-instances 

      (cdr (assoc (funcall  

     (property-test property)  

         instance)  

                    parts))))) 

   (mapcar #’(lambda (x) 

   (let ((frame (cdr x))) 

   (setf (example-frame-properties frame) 

     (remove property  

     (example-frame-properties  
        root-frame))) 

 



262 Part III: Programming in Lisp 

   (setf (example-frame-classifier frame) 

      (example-frame-classifier  

        root-frame)) 

   (setf (example-frame-size frame) 

    (list-length  

    (example-frame-instances frame))) 

   (setf  

    (example-frame-information frame) 
    (compute-information  

    (example-frame-instances frame)  
    (example-frame-classifier  

        root-frame)))))            

  parts) 

(make-partition 

    :test-name (property-name property) 

    :test (property-test property) 

    :components parts 

    :info-gain  

(compute-info-gain root-frame parts)))) 

partition begins by defining a local variable, parts, using a let 
block. It initializes parts to an association list whose keys are the 
possible values of the test in property, and whose data will be the 
subproblems of the partition. partition implements this using 
the dolist macro. dolist binds local variables to each element of a list and 
evaluates its body for each binding At this point, they are empty instances 
of example-frame: the instance slots of each subproblem are bound to 
nil. Using a dolist form, partition pushes each element of the 
instances slot of root-frame onto the instances slot of the appropriate 
subproblem in parts. push is a Lisp macro that modifies a list by 
adding a new first element; unlike cons, push permanently adds a new 
element to the list. 

This section of the code accomplishes the actual partitioning of root-
frame. After the dolist terminates, parts is bound to an association list in 
which each key is a value of property and each datum is an example frame 
whose instances share that value. Using mapcar, the algorithm then 
completes the information required of each example frame in parts, 
assigning appropriate values to the properties, classifier, size 
and information slots. It then constructs an instance of partition, 
binding the components slot to parts. 
list-classes is used in case 2 of build-tree to create a leaf node for 
an ambiguous classification. It employs a do loop to enumerate the classes 
in a list of examples. The do loop initializes classes to all the values of the 
classifier in training-frame. For each element of classes, it adds it to 
classes-present if it can find an element of the instances slot of 
training-frame that belongs to that class. 
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(defun list-classes (training-frame) 

   (do 

  ((classes (property-values  

   (example-frame-classifier  

    training-frame)) (cdr classes)) 

   (classifier (property-test  

   (example-frame-classifier  

    training-frame))) classes-present) 

    ((null classes) classes-present)                   

    (if (member (car classes)  

   (example-frame-instances  

    training-frame)  

    :test #’(lambda (x y)  

             (equal x (funcall  

      classifier y)))) 

    (push (car classes) classes-present)))) 

The remaining functions compute the information content of examples. 
compute-information determines the information content of a list of 
examples. It counts the number of instances in each class, and computes 
the proportion of the total training set belonging to each class. Assuming this 
proportion equals the probability that an object belongs to a class, it computes 
the information content of examples using Shannon’s definition: 

(defun compute-information (examples classifier) 

 (let ((class-count 

  (mapcar #’(lambda (x) (cons x 0))  

           (property-values classifier))) (size 0)) 

 ;count number of instances in each class 

  (dolist (instance examples) 

     (incf size) (incf (cdr (assoc  

            (funcall (property-test classifier)  
     instance) class-count)))) 

 ;compute information content of examples 

    (sum #’(lambda (x) (if (= (cdr x) 0) 0 

   (* –1 

   (/ (cdr x) size) 

   (log (/ (cdr x) size) 2))))  

     class-count))) 

compute-info-gain gets the information gain of a partition by 
subtracting the weighted average of the information in its components from 
that of its parent examples. 

(defun compute-info-gain (root parts) 

    (– (example-frame-information root) 

     (sum #’(lambda (x)  
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   (* (example-frame-information (cdr x)) 

      (/ (example-frame-size (cdr x)) 

       (example-frame-size root))))  

  parts))) 

sum computes the values returned by applying f to all elements of list-
of-numbers: 

(defun sum (f list-of-numbers) 

    (apply ‘+ (mapcar f list-of-numbers))) 

This completes the implementation of build-tree. The remaining 
component of the algorithm is a function, classify, that takes as 
arguments a decision tree as constructed by build-tree, and an object to 
be classified; it determines the classification of the object by recursively 
walking the tree. The definition of classify is straightforward: 
classify halts when it encounters a leaf, otherwise it applies the test from 
the current node to instance, and uses the result as the key to select a 
branch in a call to assoc. 

(defun classify (instance tree) 

 (if (leaf-p tree) 

  (leaf-value tree) 

  (classify instance 

   (cdr (assoc  

    (funcall (decision-tree-test tree)  

       instance) 

    (decision-tree-branches tree)))))) 

Using the object definitions just defined, we now call build-tree on the 
credit example of Table 19.1. We bind tests to a list of property definitions for 
history, debt, collateral and income. classifier tests the 
risk of an instance. Using these definitions we bind the credit examples to an 
instance of example-frame. 

(setq tests 

    (list (make-property 

     :name ‘history 

     :test #’history 

     :values ‘(good bad unknown)) 

    (make-property 

     :name ‘debt 

     :test #’debt 

     :values ‘(high low)) 

    (make-property 

     :name ‘collateral 

     :test #’collateral 

     :values ‘(none adequate)) 
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    (make-property 

     :name ‘income 

     :test #’income 

     :values  

   ‘(0-to-15k 15k-to-35k over-35k)))) 

(setq classifier 

    (make-property 

      :name ‘risk 

      :test #’risk 

      :values ‘(high moderate low))) 

(setq credit-examples 

    (make-example-frame 

      :instances examples 

      :properties tests 

      :classifier classifier 

      :size (list-length examples) 

      :information (compute-information 
examples classifier))) 

Using these definitions, we may now induce decision trees, and use them to 
classify instances according to their credit risk: 

> (setq credit-tree (build-tree credit-examples)) 

#S(decision-tree 

 :test-name income 

 :test #<Compiled-function income #x3525CE> 

 :branches 

   ((0-to-15k . #S(leaf :value high)) 

   (15k-to-35k . #S(decision-tree 

   :test-name history 

   :test  

   #<Compiled-function history #x3514D6> 

   :branches 

    ((good . #S(leaf :value moderate)) 

    (bad . #S(leaf :value high)) 

    (unknown . #S(decision-tree 

   :test-name debt 

   :test  

    #<Compiled-function debt #x351A7E> 

   :branches 

    ((high . #S(leaf :value high)) 

     (low .  

    #S(leaf :value moderate)))))))) 
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       (over-35k . #S(decision-tree  

   :test-name history 

   :test #<Compiled-function history #x…6> 

   :branches 

    ((good . #S(leaf :value low)) 

    (bad . #S(leaf :value moderate)) 

     (unknown .  

     #S(leaf :value low))))))) 

>(classify ‘((history . good) (debt . low) 
(collateral . none) (income . 15k-to-35k)) credit-
tree) 

moderate 

                         Exercises 

 1. Run the ID3 algorithm in another problem domain and set of examples 
of your choice. This will require a set of examples similar to those of Table 
19.1. 

2. Take the credit example in the text and randomly select two-thirds of the 
situations. Use these cases to create the decision tree of this chapter. Test 
the resulting tree using the other one-third of the test cases. Do this again, 
randomly selecting another two-thirds. Test again on the other one-third. 
Can you conclude anything from your results? 

3. Consider the issues of “bagging” and “boosting” presented in Luger 
(2009, Section 10.3.4). Apply these techniques to the example of this 
chapter. 

4. There are a number of other decision-tree-type learning algorithms. Get 
on the www and examine algorithms such QA4. Test your results from the 
algorithms of this chapter against the results of QA4. 

5. There are a number of test bed data collections available on the www for 
comparing results of decision tree induction algorithms. Check out Chapter 
29 and compare results for various test domains. 

 

 


